Linear Functions

Lecture 5 Section 1.3

Robb T. Koether

Hampden-Sydney College

Wed, Jan 25, 2017

Objectives

Objectives

- The equation of a line.
- Parallel and perpendicular lines.
- Finding the intercepts.
- Least-squares regression line.

Slope

Definition (Slope)

The **slope** of a line is the vertical change divided by the horizontal change ("rise over run") between any two points (x_1, y_1) and (x_2, y_2) on the line.

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Point-Slope Form

Definition (Point-Slope Form)

The **point-slope form** of the equation of a line is the equation

$$y-y_0=m(x-x_0)$$

where m is the slope and (x_0, y_0) is a point (any point) on the line.

Slope-Intercept Form

Definition (Slope-Intercept Form)

The **slope-intercept form** of the equation of a line is the equation

$$y = mx + b$$

where m is the slope and b is the y-intercept.

The Least-Squares Regression Line

Definition (The Least-Squares Regression Line)

Given a set of data point $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the **least-squares regression line** is the (unique) line that minimizes the sum of the vertical distances from the data points to the line.

Example

Calculating the Least-Squares Line

Given the data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, calculate the sums

$$\sum x = x_1 + x_2 + \dots + x_n,$$

$$\sum y = y_1 + y_2 + \dots + y_n,$$

$$\sum x^2 = x_1^2 + x_2^2 + \dots + x_n^2,$$

$$\sum xy = x_1y_1 + x_2y_2 + \dots + x_ny_n.$$

Then ...

Calculating the Least-Squares Line

The point

$$(\overline{x}, \overline{y})$$

is a point on the line, where \overline{x} is the average of the x values and \overline{y} is the average of the y values and the slope of the line is given by

$$m = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)(\sum x)}.$$

Calculating the Least-Squares Line

Find the least-squares regression line through the points

Example

Example

